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a b s t r a c t

Quantitative structure–retention relationship (QSRR) models correlating the retention times of fatty acid
methyl esters in high resolution capillary gas chromatography and their structures were developed based
on non-linear and linear modeling methods. Genetic algorithm (GA) was used for the selection of the vari-
ables that resulted in the best-fitted models. Gravitational index (G2), number of cis double bond (NcDB)
and number of trans double bond (NtDB) were selected among a large number of descriptors. The selected
descriptors were considered as inputs for artificial neural networks (ANNs) with three different weights
update functions including Levenberg–Marquardt backpropagation network (LM-ANN), BFGS (Broyden,
Fletcher, Goldfarb, and Shanno) quasi-Newton backpropagation (BFG-ANN) and conjugate gradient back-
atty acid methyl esters
as chromatography
rtificial neural network (ANN)

propagation with Polak–Ribiére updates (CGP-ANN). Computational result indicates that the LM-ANN
method has better predictive power than the other methods. The model was also tested successfully
for external validation criteria. Standard error for the training set using LM-ANN was SE = 0.932 with
correlation coefficient R = 0.996. For the prediction and validation sets, standard error was SE = 0.645 and
SE = 0.445 and correlation coefficient was R = 0.999 and R = 0.999, respectively. The accuracy of 3–2–1 LM-

d usi
ANN model was illustrate

. Introduction

During the past two decades, determination of fatty-acid con-
ent in bio-fluids, such as blood and plasma, has emerged into an
ntense focus of research in several areas, including, e.g. environ-

ental chemistry, food science, and medicine [1,2].
The determination of different classes of fatty acids in human

lood is very important because it could caused the certain human
ancers, including carcinoma of the breast [3], prostate [4], colon

5], ovary [6] and endometrium [7] at the high levels of fatty acid.

However, due to the diversity of fatty acids in terms of their
hain length, branching, degree of unsaturation, geometry and
osition of the double bonds, as well as the presence of other sub-
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© 2010 Elsevier B.V. All rights reserved.

stituents and annular structures their analysis is still a challenge
today [8].

Capillary gas chromatography (CGC) is the traditionally used
technique for the analysis of fatty acids, which are commonly sep-
arated as their methyl ester derivatives (fatty acid methyl esters,
FAMEs) [9]. However, it is hard work to determine experimentally
the retention times for all possible FAME compounds, due to not
only the extremely large number of isomers, but also the lack of
synthesized FAME standards. Moreover, mass spectra of fatty acid
(methyl ester) isomers are very similar and often show a very strong
fragmentation, resulting in nonspecific spectra, even for fatty acids
with different carbon chain lengths [1]. Therefore, a method for
accurately predicting retention times/indices would be of help for
the identification of individual fatty acid methyl esters.
The methodology of relating chemical structure with chro-
matographic retention parameters is known as quantitative
structure–retention relationship (QSRR) which has two main goals
including the prediction of retention coefficients and the explana-
tion of the chromatographic mechanisms [10].
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The advantage of this approach over the other methods lies
n the fact that the descriptors used to build models are mostly
btained from the structures of the analytes, and it only depends
n few experimental properties [11].

One of the most important problems is how to represent molec-
lar structure for QSRR. Generally, the descriptors encoding the
olecular structure are classified as physicochemical, quantum-

hemical, topological, geometrical, constitutional, etc. descriptors.
he second crucial factor is to select the most informative descrip-
ors from among a large number of correlated descriptors [12].

Various modeling techniques have been widely used in QSRR,
uch as multiple linear regression (MLR) [13], partial least square
PLS) [13], artificial neural network (ANN) [14,15] and support vec-
or machine (SVM) [16,17].

MLR yields models that are simpler and easier to interpret than
LS, because these methods perform regression on latent variables
hat do not have physical meaning. Due to the co linearity problem
n MLR analysis, one may remove the collinear descriptors before

LR model development. MLR equations can describe the structure
ctivity relationships well but some information will be discarded
n MLR analysis. On the other hand, factor analysis-based meth-
ds such as PLS regression can handle the collinear descriptors and
herefore better predictive models will be obtained by PLS method
18].

ANNs have grown in popularity due to their ease of use and
uccess in solving problems where complex nonlinear relationship
xist and often produce superior QSRR models compared to models
erived by the more traditional approach MLR and PLS [18–20].

There are a lot of optimization methods that can be used, of
hich genetic algorithm (GA) is one of the best. The genetic algo-

ithm which is well known as the most interesting and more
idely used variable selection method [21–23] is employed in this

esearch.
Farkas et al. developed linear methods to build models for

escription and prediction of Kováts retention indices for a wide
ariety of fatty acid methyl esters replacing the measured proper-
ies by easily calculated two dimensional descriptors [24].

In this study, we have considered the relationship between the
tructure of fatty acid methyl ester derivatives and their retention
imes using different linear and non-linear chemometrics meth-
ds. In due course, the genetic algorithm (GA) was used for the
election of the variables that resulted in the best-fitted models.
rtificial neural networks with three different weight update func-

ions including Levenberg–Marquardt backpropagation network
LM-ANN), BFGS quasi-Newton backpropagation (BFG-ANN) and
onjugate gradient backpropagation with Polak–Ribiére updates
CGP-ANN), have been used as non-linear methods for modeling
nd predicting of the retention times of FAMEs in human blood. In
ddition, genetic algorithm-multiple linear regression (GA-MLR)
nd partial least square (PLS), as linear methods; have also been
sed to treat the same data set. Obtained results indicate that Grav-

tational index (G2) and number of cis and trans double bonds have
mportant role in capillary gas chromatographic retention time of
tudied compounds.

. Theory

.1. Artificial neural network

Artificial neural networks are parallel computational devices

onsisting of groups of highly interconnected processing elements
alled neurons. Neural networks are characterized by topology,
omputational characteristics of their elements, and training rules.
raditional neural networks have neurons arranged in a series of
ayers. The first layer is termed the input layer, and each of its neu-
3 (2011) 1014–1022 1015

rons receives information from the exterior, corresponding to one
of the independent variables used as inputs. The last layer is the out-
put layer, and its neurons handle the output from the network. The
layers of neurons between the input and output layers are called
hidden layers. Each layer may make its independent computations
and may pass the results yet to another layer.

Learning in biological systems involves adjustments to the
synaptic connections that exist between the neurons, and the
same happens with artificial neural networks. The strength of the
synapse from neuron i to neuron j is determined by means of a
weight, wij. In addition, each neuron j from the hidden layer, and
eventually the output neuron, are associated with a real value bj,
named the neuron’s bias and with a non-linear function, named the
transfer or activation function.

The backpropagation network receives a set of inputs, which is
multiplied by each node and then a non-linear transfer function is
applied [14,25]. The goal of training the network is to change the
weights between the layers in a direction to minimize the output
errors. The changes in the values of the weights can be obtained
using Eq. (1):

wij,n = Fn + ˛wij,n−1; (1)

where wij,n is the change in the weight factor for each network
node, ˛ is the momentum factor, and F is a weight update func-
tion, which indicates how weights are changed during the learning
process. There is no single best weight update function, which can
be applied for all non-linear optimizations. One needs to choose a
weight update function based on the characteristics of the prob-
lem and the data set of interest. Various types of algorithms have
been found to be effective for most practical purposes. However, in
this work we have used three different weights update functions of
Levenberg–Marquardt (LM) algorithm, BFGS quasi-Newton back-
propagation (BFG) and conjugate gradient backpropagation with
Polak–Ribiére updates (CGP) which are discussed below.

2.1.1. Backpropagation neural networks
Backpropagation neural networks (BNNs) have non-linear dif-

ferentiable transfer functions and multilayer feed-forward neural
networks trained by backpropagation of errors (traditionally) using
two algorithms including gradient descent or gradient descents
with momentum [26]. These two backpropagation training algo-
rithms are often too slow for practical problems. This section
discusses several high-performance algorithms that can converge
from ten to one hundred times faster than these two algorithms.

2.1.2. BFGS quasi-Newton backpropagation (BFG)
Trainbfg is a network training function that updates weight and

bias values according to the BFGS quasi-Newton method. Trainbfg
can train any network as long as its weight, net input, and transfer
functions have derivative functions. Backpropagation is used to cal-
culate derivatives of performance perf with respect to the weight
and bias variables X. Each variable is adjusted according to Eq. (2):

X = X + a∗dX; (2)

where dX is the search direction. The parameter a is selected to min-
imize the performance along the search direction. The line search
function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In
succeeding iterations the search direction is computed according
to Eq. (3):
dX = −H

gX
; (3)

where gX is the gradient and H is a approximate Hessian matrix
[27].



1 anta 8

2
u

b
P
w
B
p
i

t
t

d

w
e
g

Z

w
g

2

m
d
t
p
f
w

H

g

t
a
t
c

t

X

w
a
e
m
N
e
i
m
r

2

s
i
i
t
b
G
r
d

016 V.K. Gupta et al. / Tal

.1.3. Conjugate gradient backpropagation with Polak–Ribiére
pdates (CGP)

Traincgp is a network training function that updates weight and
ias values according to conjugate gradient backpropagation with
olak–Ribiére updates. Traincgp can train any network as long as its
eight, net input, and transfer functions have derivative functions.
ackpropagation is used to calculate derivatives of performance
erf with respect to the weight and bias variables X. Each variable

s adjusted according to Eq. (2):
In succeeding iterations the search direction is computed from

he new gradient and the previous search direction according to
he following formula: Eq. (4):

X = −gX + dX old∗Z; (4)

here gX is the gradient. The parameter Z can be computed in sev-
ral different ways. For the Polak–Ribiére variation of conjugate
radient, it is computed as Eq. (5):

= (gX − gX old)′∗gX

norm sqr
; (5)

here norm sqr is the norm square of the previous gradient, and
X old is the gradient on the previous iteration [27].

.1.4. Levenberg–Marquardt (trainLM)
This algorithm appears to be the fastest method for training

oderate-sized feedforward neural networks (up to several hun-
red weights). The Levenberg–Marquardt algorithm was designed
o approach second-order training speed without having to com-
ute the Hessian matrix. When the performance function has the
orm of a sum of squares (as is typical in training feedforward net-
orks), then the Hessian matrix can be approximated as Eq. (6):

= JT J (6)

In addition, the gradient can be computed as Eq. (7):

= JT e (7)

where J is the Jacobian matrix that contains first derivatives of
he network errors with respect to the weights and biases, and e is
vector of network errors. The Jacobian matrix can be computed

hrough a standard backpropagation technique that is much less
omplex than computing the Hessian matrix.

The Levenberg–Marquardt algorithm uses this approximation
o the Hessian matrix in the following Newton-like update: Eq. (8):

k+1 = Xk − [JT J + �I]
−1

JT e (8)

hen the scalar � is zero, this is just Newton’s method, using the
pproximate Hessian matrix. When � is large, this becomes gradi-
nt descent with a small step size. Newton’s method is faster and
ore accurate near an error minimum, so the aim is to shift toward
ewton’s method as quickly as possible. Thus, � is decreased after
ach successful step (reduction in performance function) and is
ncreased only when a tentative step would increase the perfor-

ance function. In this way, the performance function is always
educed at the each iteration of the algorithm [18,27].

.2. Genetic algorithm (GA)

Genetic algorithm is a (global) minimum search algorithm to
olve optimization problems defined by a fitness criteria apply-
ng evolution hypothesis of Darwin and different genetic functions,
.e. crossover and mutation. GA has three basic operations (selec-

ion, cross-over and mutation) and takes the intermediate position
etween the stepwise and random approaches [28]. The result of
A is a whole population of solutions (variable combinations) and

esearchers have the opportunity to choose one for validation and
evelopment in future experiments.
3 (2011) 1014–1022

The purpose of a variable selection is to select the variables sig-
nificantly contributing to prediction and discard the other variables
by a fitness function. In GA for variable selection, an individual
(or chromosome), i.e. solution, represents a set of variables, there
are the following basic steps in algorithms: (1) a chromosome is
represented by a binary bit string and an initial population of chro-
mosomes is created in a random way; (2) a value for the fitness
function of each chromosome is evaluated; (3) according to the val-
ues of the fitness function, the chromosomes of the next generation
are reproduced by selection, crossover and mutation operations
[29].

3. Experimental

3.1. Data sets

Retention times of studied fatty acid methyl ester were taken
from Ref. [1]. The retention times and names of these compounds
are taken in Tables 1 and 2. The detailed descriptions of abbre-
viations using the shorthand annotation for all fatty acid methyl
esters were given in Ref. [1]. Prior to the calculation of the molecular
descriptors, the 3D structures of the studied compounds were opti-
mized using semi-empirical quantum-chemical methods of AM1
implemented in HyperChem computer program [30].

3.2. Molecular descriptors

The main step in every QSRR study is choosing and calculating
the structural descriptors as numerical encoded parameters repre-
senting the chemical structures. In the present work the molecular
descriptors were generated using Dragon, version web 3.0 [31] and
HYPERCHEM softwares; Moreover due to existence of cis and trans
double bond in some studied fatty acid methyl ester, we use of num-
ber of cis double bound (NcDB) and number of trans double bound
(NtDB) as two descriptors. Descriptors with constant or almost con-
stant values for all molecules were eliminated. In addition, pairs
of variables with a correlation coefficient greater than 0.90 were
classified as intercorrelated and only one of them were considered
in developing the models. A total of 172 descriptors were consid-
ered for further investigations after discarding the descriptors with
constant and intercorrelated ones.

3.3. Variable selection

A major step in constructing the QSRR models is finding one or
more molecular descriptors that represent variation in the struc-
tural property of the molecules numerically. The genetic algorithm
(GA) was used for the selection of the variables that resulted in
the best-fitted models. It has already been shown that genetic
algorithms (GA) can be successfully used as a feature selection
technique [21–23].

In this paper, size of the population is 50, the probability of initial
variable selection is 3: V (V is the number of independent variables),
the probability of crossover is 0.6, the probability of mutation is
0.01 and the number of evolution generations is 1000. For each set
of data, 3000 runs were performed. Appropriate models with low
standard errors and high correlation coefficients were obtained.
Consequently, among different models, the best model was cho-
sen, whose specifications are presented in Table 3. It is obvious that
as the number of descriptors increase the R2 will increase. Fig. 1a
shows the effect of increasing the number of descriptors on R2

p val-

ues. It can be seen from this figure that increasing the number of
parameters only up to three has a large influence on improving cor-
relation. Therefore, we have chosen three descriptors as optimum
number of parameters. The descriptors appearing in this model are
G2, NcDB and NtDB, whose definitions are given in Table 3. As it can
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Table 1
The observed and calculated retention time (Rt) of fatty acid methyl esters – training set for the ANNs, PLS and MLR models.

No. Namea Rt exp Rt ANN-LM Rt ANN-BFG Rt ANN-CGP Rt MLR Rt PLS

1 C8:0 12.57 13.213 13.667 13.344 4.293 12.734
2 C15:0 anteiso 19.25 19.487 19.232 19.128 20.832 18.304
3 C15:0 19.68 19.522 19.265 19.166 20.886 18.937
4 C16:0 iso 20.44 21.170 20.825 20.921 23.204 21.085
5 C17:0 23.22 23.151 22.778 22.951 25.626 23.561
6 C18:0 iso 24.26 25.304 24.996 25.067 27.944 26.043
7 C18:0 25.51 25.357 25.052 25.118 27.998 26.302
8 C9:0 13.41 13.683 14.079 13.612 6.661 13.064
9 C19:0 28.07 27.829 27.718 27.509 30.37 28.857

10 C21:0 34.26 33.611 34.209 33.415 35.111 34.739
11 C22:0 37.75 37.009 37.906 37.148 37.483 37.942
12 C23:0 iso 39.46 40.757 41.602 41.235 39.801 40.925
13 C23:0 41.48 40.842 41.681 41.325 39.851 40.98
14 C24:0 45.49 45.126 45.288 45.578 42.223 44.331
15 C25:0 49.50 49.454 48.436 49.280 44.595 47.515
16 C26:0 53.67 52.733 50.889 51.894 46.963 51.285
17 C14:1 n5c 19.39 18.812 18.907 20.389 20.525 20.170
18 C15:1 n5c 20.61 20.421 20.399 22.055 22.848 18.865
19 C16:1 n7c 22.57 22.388 22.263 23.856 25.266 25.250
20 C11:0 15.13 14.965 15.192 14.548 11.401 13.291
21 C18:1 n10t 26.47 26.814 27.751 26.784 28.316 27.270
22 C18:1 n9t 26.47 26.829 27.776 26.815 28.337 27.250
23 C18:1 n8t 26.54 26.814 27.751 26.784 28.316 27.270
24 C18:1 n7t 26.72 26.814 27.751 26.784 28.316 26.936
25 C18:1 n6t 26.84 26.814 27.751 26.784 28.316 26.685
26 C18:1 n7c 27.20 27.186 27.004 27.727 30.006 29.752
27 C18:1 n6c 27.36 27.186 27.004 27.727 30.006 27.164
28 C18:1 n5c 27.56 27.186 27.004 27.727 30.006 29.212
29 C12:0 16.07 15.820 15.937 15.307 13.773 14.273
30 C18:1 n3c 27.78 27.214 27.033 27.750 30.031 31.117
31 C20:1 n9c 32.80 33.305 33.352 32.904 34.775 35.406
32 C24:1 n9c 47.90 48.532 47.696 48.297 44.231 47.094
33 C18:2 n6tt 28.76 28.810 30.899 30.994 28.663 28.326
34 C13:0 17.11 16.849 16.842 16.318 16.145 15.423
35 C18:2 n6ct 28.96 32.016 29.984 30.587 30.307 27.457
36 C18:2 n6cc 29.47 29.056 29.154 29.792 31.993 28.401
37 C20:2 n6c 35.79 35.960 36.035 35.400 36.771 35.116
38 �-C18:3 n6c 31.19 30.999 31.541 31.682 33.997 30.847
39 C20:3 n6c 38.05 38.569 38.854 38.031 38.787 36.754
40 C20:4 n6c 39.79 41.101 41.735 40.889 40.832 39.069
41 C22:4 n6c 48.20 48.679 48.442 48.718 45.547 45.999
42 �-C18:3 n3c 32.39 31.029 31.570 31.704 34.017 32.859
43 C20:3 n3c 36.65 38.569 38.854 38.031 38.787 39.218
44 C22:6 n3c 54.30 51.660 51.800 52.282 49.534 54.571
45 c9,t11-CLA 33.01 32.062 30.034 30.643 30.345 34.574
46 t10,c12-CLA 33.24 32.072 30.045 30.655 30.353 32.645
47 t10,t12-CLA 34.53 32.097 30.073 30.687 30.374 33.561
48 C14:0 18.31 18.088 17.950 17.619 18.538 17.034
49 C15:0 iso 18.92 19.487 19.232 19.128 20.832 18.638

a The detailed description of abbreviations for all these fatty acid methyl esters is given in Ref. [1].

Table 2
The observed and calculated retention time (Rt) of fatty acid methyl esters – test and validation sets for the ANNs, PLS and MLR models (for ANNs and MLR: Test set no.: 1–9
and validation set no.: 10–15).

No. Namea Rt exp Rt ANN-LM Rt ANN-BFG Rt ANN-CGP Rt MLR Rt PLS

1 C17:0 anteiso 22.65 22.573 22.489 22.660 25.576 22.94
2 C20:0 30.96 30.961 30.976 30.974 32.738 31.927
3 C10:0 14.28 14.305 14.328 14.28 9.0328 12.829
4 C18:1 n9c 26.96 27.514 27.369 27.301 30.006 30.412
5 C18:1 n4c 27.64 27.138 27.343 27.282 29.985 28.698
6 C18:2 n6tc 29.10 29.100 31.143 31.147 30.374 29.461
7 C22:5 n6c 49.80 50.718 51.124 51.133 47.526 49.598
8 C22:5 n3c 52.56 51.315 51.157 51.183 47.592 50.589
9 c11, t13-CLA 33.17 33.170 31.125 31.12 30.361 32.763

10 C16:0 21.38 20.712 20.895 20.948 23.258 21.274
11 C17:0 iso 22.21 22.519 22.541 22.564 25.601 22.983
12 C18:1 n11t 26.47 26.470 26.471 26.480 28.328 25.783
13 C22:1 n9c 39.98 39.976 39.984 40.122 39.516 40.822
14 C14:0 iso 17.66 18.172 17.906 17.858 18.464 16.147
15 C20:5 n3c 43.73 43.728 43.73 43.66 42.852 44.22

a The detailed description of abbreviations for all these fatty acid methyl esters is given in Ref. [1].
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Table 3
Selected descriptors of genetic algorithm model.

Descriptor Notation Regression coefficient Standard error Mean effect

Number of cis double bond (constitutional descriptor) NcDB 1.925 ±0.347 0.031
Number of trans double bond (constitutional descriptor) NtDB 0.260 ±0.964 0.001
Gravitational index G2 (bond-restricted) (geometrical descriptor) G2
Constant

R2
training = 0.918, SEtraining = 3.002, R2

test = 0.940, SEtest = 2.889.
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ig. 1. (a) Influence of number of descriptors on R2 for the GA model, (b) PRESS
ersus the number of factors for the PLS model.

e seen from the correlation matrix (Table 4) there is no significant
orrelation between the selected descriptors.

.4. PLS

PLS is a linear modeling technique where information in the

escriptor matrix X is projected onto a small number of underly-

ng (“latent”) variables called PLS components, referred to as latent
ariables. The matrix Y is simultaneously used in estimating the
latent” variables in X that will be most relevant for predicting the
variables.

able 4
orrelation matrix for the three selected descriptors (degree of freedom: 46).

NcDB NtDB G2

NcDB 1
NtDB −0.186 1
G2 0.267 −0.001 1
4.140 ±0.213 0.938
−22.721 ±2.585

At the present work, the modeling by PLS method was per-
formed using MINITAB 15. For regression analysis, data set
was separated into two groups: training and prediction sets
(Tables 1 and 2). The number of significant factors for the PLS algo-
rithm was determined using the cross-validation method. With
cross-validation, ten samples was kept out (leave ten out) of the
calibration and used for prediction. The predicted values of left-out
samples were then compared to the observed values using pre-
diction error sum of squares (PRESSs). The PRESS obtained in the
cross-validation was calculated each time that a new principal com-
ponent (PC) was added to the model. The optimum number of PLS
factors is the one that minimizes PRESS [32]. PRESS is defined as
Eq. (9):

PRESS =
∑n

i=1
(ŷi − yi)

2 (9)

where ŷi the estimated value of the ith is objects and yi is the cor-
responding reference value of this object. Fig. 1b shows the plot of
PRESS versus the number of factors for the PLS model. The best PLS
model contained seven factors.

3.5. ANNs

The networks were generated using the three descriptors
appearing in the GA models as their inputs and Rts as their out-
put. For ANN generation, data set was separated into three groups:
training, test and validation set (Tables 1 and 2). All molecules were
randomly placed in these sets. The training set, consisted of 49
molecules, was used for the model generation. However, the test
set, consisted of 9 molecules, was used to take care of the over-
training. The prediction set, consisted of 6 molecules, was used to
evaluate the generated model.

A three-layer network with a sigmoid transfer function was
designed for each ANN. Before training the networks, the input
and output values were normalized between zero and one. The
ANNs program was coded in MATLAB 7.1 for windows [27]. The
network was then trained using the training set by the backpropa-
gation strategy for optimization of the weights and bias values. The
proper number of nodes in the hidden layer was determined by
training the network with different number of nodes in the hidden
layer.

The root-mean-square error (RMSE) value measures how good
the outputs are in comparison with the target values. It should be
noted that for evaluating the overfitting, the training of the net-
work for the prediction of Rt must stop when the RMSE of the
test set begins to increase while RMSE of calibration set contin-
ues to decrease. Therefore, training of the network was stopped
when overtraining began. All of the above-mentioned steps were
carried out using BFGS quasi-Newton backpropagation (BFG), con-
jugate gradient backpropagation with Polak–Ribiére updates (CGP)
and Levenberg–Marquardt (trainlm) weight update functions.
3.6. Testing for chance correlations

Part of validating the models is to check for the possibility of
chance correlations. This can be done by performing the entire
sequence of computations over but with the dependent variables
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crambled. This scrambling destroys any relationship between the
escriptors and the dependent variable. No model that exceeds
hance performance should be found. The results obtained are
ompared to the results achieved with the actual computations
o demonstrate that the actual results were achieved by finding
elationships rather than by finding chance correlations [18].

.7. Cross-validation technique

The consistency and reliability of a method can be explored
sing the cross-validation technique [33]. Two different strategies
f leave-one-out (LOO) and leave-multiple-out (LMO) can be car-
ied out in this method. In LOO strategy, by deleting each time one
bject from training set, a number of models will be produced. Obvi-
usly, the number of models produced by the LOO procedure is
qual to the number of available examples n (n = 64). Prediction
rror sum of squares (PRESSs) is a standard index to measure the
recision of a modeling method based on the cross-validation tech-
ique. Based on the PRESS and SSY (sum of squares of deviations of
he experimental values from their mean) statistics, the Q 2

LOO can
e easily calculated by Eq. (10):

2
LOO = PRESS

SSY
= 1 −

∑n
i=1(yexp − ypred)2∑n

i=1(yexp − ȳ)2
(10)

In the case of LMO, M represents a group of randomly selected
ata points, which would leave out at the beginning and would be
redicted by the model, which was developed using the remaining
ata points. So, M molecules are considered as prediction set. The
2
LMO can be calculated by Eq. (11):

2
LMO = 1 −

∑test
i=1 (yexp − ypred)2∑test
i=1 (yexp − ȳtrain)2

(11)

The higher the Q 2
LOO or R2

LMO the higher the predictive power of
he model [33].

. Results and discussion

The main aim of the present work was developing a QSRR model
o prediction of the retention times of fatty acid methyl esters in
uman blood. Chromatographic retention is based on interactions
etween the solute and the stationary phase, and the aim of the
resent work is to find which of the available topological, geomet-
ical, constitutional, and physical descriptors that we computed
re related to the retention of the FAMEs present in human blood.
herefore, the development of a robust and interpretable QSRR
odel, which is able to accurately predict the Rt, is necessary.
Genetic algorithm (GA) was used for the selection of the vari-

bles that resulted in the best-fitted models. Gravitational index
G2), number of cis double bond (NcDB) and number of trans double
ond (NtDB) were selected among a large number of descriptors.

As first step, for the selection of the most important descriptors
enetic algorithm was used which finally selected three descriptors
hose specifications are given in Table 3. Due to existence of cis and

rans isomers in studied fatty acid methyl ester we expected that
he NcDB, NtDB and 3-dimensional descriptors play an important
ole for the prediction of retention times in the modeling. The num-
er of double bonds can make a distinction between compounds
ith the same chain length. Furthermore, the methoxycarbonyl

ragment is constant in each solute so we cannot expect the leading

ole of polarity and polarity related parameters. It can be seen from
able 3, three descriptors, including G2 (3D-descriptor), NcDB and
tDB (0D-descriptors), were chosen among 172 parameters. These
escriptors can be classified as geometrical (G2) and constitutional
NcDB and NtDB) descriptors.
3 (2011) 1014–1022 1019

Gravitational index (G2) (bond-restricted) is a geometrical
descriptor that reflecting the mass distribution in a molecule and
defined as Eq. (12):

G2 =
A∑

a=1

(
mi · mj

r2
ij

)
a

(12)

where mi and mj are the atomic masses of the considered atoms; rij
the corresponding interatomic distances; and A the number of all
pairs of bonded atoms of the molecule. This index is related to the
bulk cohesiveness of the molecules, accounting, simultaneously,
for both atomic masses (volumes) and their distribution within the
molecular space. This index can be extended to any other atomic
property different from atomic mass, such as atomic polarizability,
atomic, van der Waals volumeetc. [34]. This descriptor has a posi-
tive coefficient in the linear model; therefore it indicates that the
molecules with larger number of bonded atoms and lower inter-
atomic distances are expected to bind more tightly to CGC column.

The NcDB and NtDB are other descriptors that selected with
GA method. The positive coefficient of these descriptors, especially
NcDB, in the model implies that existence of cis and trans double
bonds in the structure of fatty acid methyl esters can lead to a longer
Rt value in the column. In the other hand increasing the number of
cis and trans double bonds in the studied compounds caused the
longer Rt value.

The second step was developing of MLR model to assess the
linear relationship between these descriptors and retention times.
A value of 0.940 for R2

P of this model reveals that it is able to account
94.0% of the variances of the Rt.

We have used the proposed linear model to interpret the mecha-
nism of the retention time of fatty acid methyl esters. This means we
should investigate the variables that are the most important pre-
dictors among the three descriptors appearing in the MLR model.
In the case of the MLR, the mean effect of each descriptor can be
considered as a measure of its role in predicting the retention time
of FAMEs. Mean effect is defined as Eq. (13):

MFi = ˇJ

∑i−n
i=1dij∑m

j ˇ
∑i−n

i=1dij

(13)

where MFi represents the mean effect for the considered descriptor
j, ˇj is the coefficient of the descriptor j, dij stands for the value of
the target descriptors for each molecule and, eventually, m is the
descriptor number in the model. The MF value indicates the relative
importance of a descriptor, compared with the other descriptors in
the model. Its sign exhibits the variation direction in the values
of the activities as a result of the increase (or reduction) of these
descriptor values.

The mean effects for each variable in the MLR model are shown
in Table 3. As can be seen from this table, G2 and NcDB are more
important parameters than NsDB affecting the retention time of the
molecules. Fig. 2(a) and (b) indicates the changes of these descrip-
tors against the Rt values of the molecules. As can be seen from
these figures, Rt values increases with increasing of NcDB in the
structure of FAMEs with the same chain length, and also Rt values
increases with increasing the G2 values.

For the sake of comparison, a PLS analysis was also performed
using all 172 variables. However, seven latent variables were
selected using PLS. Standard error for the training and prediction set
using PLS was SE = 1.412 and SE = 1.369 and correlation coefficient
was R = 0.991 and R = 0.993, respectively. The R2 value of 0.987 for

the prediction set reveals that this model is able to account 98.7%
of the variances of the Rt. As can be seen from Table 5 the statistical
parameters of PLS model are superior to MLR model. This is due
to the collinearity problem in MLR analysis, while PLS regression
can handle the collinear descriptors and therefore better predictive
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Fig. 2. (a) and (b) Plot of Rt values aga

odels will be obtained [18]. The MLR and PLS calculated values
f retention times for training and prediction sets are shown in

ables 1 and 2.

The next step was developing of the feed forward backprop-
gation artificial neural network using the descriptors appearing
n the GA model as its inputs. It is a common practice to opti-

able 5
he statistical parameters for ANN, MLR, and PLS models.a

Model Training Test Validation

R2 SE R2 SE R2 SE

LM-ANN 0.992 0.932 0.998 0.645 0.999 0.445
CGP-ANN 0.988 1.130 0.990 1.326 0.999 0.304
BFG-ANN 0.984 1.347 0.990 1.329 0.999 0.317
MLR 0.918 3.002 0.924 3.611 0.989 1.289
PLS 0.982 1.412 0.987 1.369 – –

a Number factors of the PLS model are 6 and number of descriptors for MLR and
NN models are 3.
e descriptor values: (a) NcDB, (b) G2.

mize the parameters of number of nodes in the hidden layer,
learning rate and momentum in developing a reliable network.
The procedure for optimizing these parameters are given else-
where [35–50]. However, as it can be seen from Eq. (1), there is
a term called weight update function, which indicates the way
that weights are changed during the learning process. This paper
focuses on investigating the role of weight update function. The
statistical parameters for three different LM, BFG and CGP algo-
rithms are given in Table 5; also the statistical parameters MLR
and PLS models is shown in this table to compare the perfor-
mance of the models. It can be seen from this table that the
statistical parameters of LM-ANN model are superior to that of
other models. Inspection of this table reveals the importance of
the role of algorithms by which the weight update functions are

considered. Therefore, a backpropagation network with a 3–2–1
architecture was developed using Levenberg–Marquardt algorithm
(LM-ANN) to predict the retention times of FAMEs in human
blood.
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Table 6
Cross-validation results for LM-ANN and MLR models.

2 2 2 2

i
0
m
v
F
t
T

a
t
d
o
r
h
o
i
s
L

Y
d
Q
m
v
t
t
r
a
i
t
t
t
v
T
t
m

F
l

Table 7
Regression coefficient (R2) and SE values for Y-randomization tests for LM-ANN and
MLR models.

Iteration LM-ANN MLR

R2 SE R2 SE

1 0.039 10.615 0.011 11.005
2 0.027 10.607 0.019 10.886
3 0.036 11.006 0.070 11.048
4 0.170 9.350 0.051 10.214
5 0.043 10.716 0.021 11.074
6 0.030 10.569 0.005 10.940
7 0.021 10.852 0.022 11.087
8 0.018 9.998 0.045 10.080
9 0.013 10.837 0.015 11.065

10 0.106 10.432 0.087 10.774
Model R L10O R L12O R L15O Q LOO

LM-ANN 0.989 0.994 0.997 0.981
MLR 0.812 0.768 0.732 0.765

It can be seen from Table 5 that the R2 and SE values have
mproved from 0.918 and 3.002 for the MLR model to 0.992 and
.932 for the LM-ANN model for the training set, respectively. It
eans that this non-linear model is able to account 99.2% of the

ariances of the capillary gas chromatographic retention times of
AMEs in human blood. The calculated values of Rt for training,
est and validation sets using three different ANNs are shown in
ables 1 and 2.

In order to ensure the reliability of the proposed model we have
lso used leave multiple out-cross validation (LMO-CV). Based on
his technique, a number of modified data sets were created by
eleting in each step a small group of objects (here 10, 12 and 15
bjects) and then the model was evaluated by measuring its accu-
acy in predicting the responses of the deleted group (the ones that
ave not been utilized in the development of the model). The results
f L10O, L12O and L15O for MLR and LM-ANN methods are reported
n Table 6. The consistency in the statistic of R2 for different data
ets of L10O, L12O and L15O reveals the stability and robustness of
M-ANN is superior models compared to the MLR model.

To further check the robustness of the LM-ANN model, the
-randomization test was performed in this contribution. The
ependent variable vector (Rt) was randomly shuffled and a new
SRR model was developed using the original independent variable
atrix. The new QSRR model is expected to have low R2 and high SE

alues. Several random shuffles of the y vector were performed and
he results are shown in Table 7. The R2 and SE values indicate that
he good results for the LM-ANN model are not due to a chance cor-
elation or structural dependency of the training set. The observed
nd LM-ANN predicted values of the Rt for all of the FAMEs stud-
ed in this work are shown in Tables 1 and 2. Fig. 3 demonstrates
he plot of the LM-ANN predicted versus the experimental values of
he Rt for the data set. A correlation coefficient of this plot indicates
he reliability of the model. The residuals of the LM-ANN calculated

alues of Rt are plotted against the experimental values in Fig. 4.
he propagation of the residuals on both sides of zero line indicates
hat no systematic error exists in the development of the LM-ANN

odel.

ig. 3. Plot of experimental Rt values of fatty acid methyl esters against the calcu-
ated values for LM-ANN.
Fig. 4. Plot of residuals versus experimental Rt values for LM-ANN.

5. Conclusion

Fatty acid methyl ester derivatives including some pairs of iso-
mers with similar structures but different retention behaviors were
included to build QSRR models. Comparison of the values of sta-
tistical parameters obtained using models of ANNs (with three
different weight update functions including LM-ANN, BFG-ANN
and CGP-ANN), PLS and MLR for predicting of capillary gas chro-
matographic retention time of FAMEs shows superiority of the
Levenberg–Marquardt back propagation network (LM-ANN) over
those of non-linear and especially linear models. Obtained mod-
els indicated that geometrical (G2) and constitutional (NcDB and
NtDB) descriptors, selected by using genetic algorithm method,
have important role in retention times of studied compounds. By
focusing on the role of the weight update function, we realized
that the algorithms of weight update functions are important in
the performance of the network. The main conclusion of this study
is that Levenberg–Marquardt backpropagation artificial neural net-
work with a 3–2–1 architecture is a reliable tool for the prediction
of capillary gas chromatographic retention time of fatty acid methyl
ester derivatives.
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